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Abstract. We propose a new efficient scheme for the quantum Monte Carlo study of quantum
critical phenomena in quantum spin systems. Rieger and Young’s Trotter-number-dependent
finite-size scaling in quantum spin systems and Itoet al’s evaluation of the transition point with
the non-equilibrium relaxation in classical spin systems are combined and generalized. That is,
only one Trotter number and one inverse temperature proportional to system sizes are taken for
each system size, and the transition point of the transformed classical spin model is estimated as
the point at which the order parameter shows power-law decay. The present scheme is confirmed
by the determination of the critical phenomenon of the one-dimensionalS = 1

2 asymmetricXY
model in the ground state. The estimates of the transition point and the critical exponentsβ, γ
andν are in good agreement with the exact solutions. The dynamical critical exponent is also
estimated as1 = 2.14±0.06, which is consistent with that of the two-dimensional Ising model.

1. Introduction

Quantum critical phenomena are one of the most interesting topics in low-dimensional
quantum spin systems, and various numerical methods have been proposed. In one-
dimensional systems, the exact-diagonalization method gives the most reliable result when
the chain is single and the size of spins is not so large. In multileg ladder systems
or large-spin systems, reachable system sizes with this method are not satisfactory and
other approximate methods should be used. Historically, the quantum Monte Carlo
(QMC) method [1, 2] and related methods (the quantum transfer-matrix method [2–4], the
Monte Carlo power method [2, 5] etc) have been used, and nowadays the density-matrix
renormalization-group (DMRG) method [6–8] is considered to be most powerful because
quite large (effectively infinite) systems can be calculated with small errors and relatively
small required CPU demand. The DMRG method is applicable even to two-dimensional
systems with large enough energy gap, but the limitation of computer memories makes the
estimation of critical phenomena difficult at present (any systems are gapless at the critical
point in the thermodynamic limit). Then, the QMC method is still most useful to study
quantum critical phenomena in non-frustrated two-dimensional quantum spin systems.

In QMC simulations of ground states in quantum spin systems, the most serious
problem is large sampling errors. The QMC method is essentially applicable only to
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finite-temperature systems, and ‘ground states’ mean nothing but ‘calculations at low
enough temperatures’, which might include ambiguity. Moreover, simulations at low
temperatures result in large correlation time, which is the origin of large sampling errors.
Furthermore, in the conventional world-line QMC method, physical quantities are evaluated
after the extrapolation of the data for various Trotter numbers, which makes statistical errors
larger. These shortcomings of the world-line QMC algorithm have been overcome with
the stochastic series expansion method [9–11], the quantum cluster algorithm [12, 13] or
Prokof’ev’s algorithm [14, 15] proposed recently. The Trotter extrapolation is not required
in these methods, and fast relaxation of them makes simulations at very low temperatures
possible. As long as finite systems are considered, energy gaps are finite even at the
transition point, and simulations at temperatures lower enough than the energy gaps give
‘ground-state’ properties with convergent correlation time. Although such a brute-force
strategy is required for the evaluation of actual physical quantities at the ground state, a
more efficient scheme is expected to study quantum critical phenomena, in which universal
behaviour exists.

In this paper, we propose a new efficient scheme to study quantum critical phenomena in
quantum spin systems with the QMC method. This scheme can be regarded as a combination
and a generalization of two independent techniques of Monte Carlo calculations originally
proposed in Ising spin systems. That is, Rieger and Young’s Trotter-number-dependent
finite-size scaling [16] introduced in the QMC study of the quantum critical phenomenon of
the Ising spin-glass model in a transverse field is coupled with Itoet al’s determination of
the transition point [17] based on the non-equilibrium relaxation of the order parameter. The
latter method was introduced in the classical Ising spin-glass model, and the former method
is necessary for the generalization to quantum spin systems. By use of the present scheme,
only one Trotter number has to be considered in each system size for the determination
of the universality class. In short, the combination of these two methods is essential for
efficient numerical calculations in quantum spin systems.

In order to verify the applicability of the present scheme, we estimate the transition point
and critical exponents of the one-dimensionalS = 1

2 asymmetricXY model. This model is
mapped on a two-dimensional Ising spin model with conservation laws (or infinite multi-
body interactions in the Ising-spin representation) by the Suzuki–Trotter decomposition
[1], and the universality class of this model [18–20] is different from that of the two-
dimensional Ising model. In section 2, the present scheme is explained together with a brief
review of the world-line QMC method. In section 3, the quantum critical phenomenon
of the one-dimensionalS = 1

2 asymmetricXY model is analysed. The transition point
and the dynamical critical exponent are estimated with very large clusters (linear sizes are
L = 1024, 2048 and 4096) and various critical exponents are estimated with the clusters
up to L = 128. The above descriptions are summarized in section 4. Part of the present
results have already been briefly reported elsewhere [21].

2. Numerical methods

In the world-line quantum Monte Carlo method [1, 2], the partition function of quantum
spin systems is transformed to a classical one by the Suzuki–Trotter formula,

Z ≡ Tr e−βH = lim
M→∞

Tr

[
exp

(
− β
M
H1

)
exp

(
− β
M
H2

)]M
(1)

whereβ stands for the inverse temperature (β ≡ 1/T ), and the partial HamiltoniansH1 and
H2 in one-dimensional systems are shown in figure 1, which is known to be the checkerboard
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Figure 1. The checkerboard decomposition in one-dimensional systems.

decomposition. Then, each 4-spin unit cell is independent, and Monte Carlo simulations
are possible. Conventional local flips and thex-direction global flip are introduced. When
the models have conservation laws, the Trotter-direction global flip should be considered
for the evaluation of the thermal averages in the whole phase space. As is well known, the
tangent-direction global flip can be safely omitted, and this algorithm is vectorized [22].

In the conventional world-line QMC method, quantities in the ground state are evaluated
as follows.

(i) The temperature is fixed at a ‘low enough’ one,T0(L), which is much smaller than
the energy gap of finite clusters,1E(L), in the subspace in which the ground state is
included. The Trotter-direction global flip is not introduced in this case.

(ii) QMC simulations are performed for some finite Trotter numbersM, and quantities
in the M → ∞ limit are estimated with the following scaling form,Q(M,L) =
Q(∞, L)+ constant/M2+ · · · .

(iii) Quantities in the thermodynamic limit are evaluated from the finite-size scaling of
{Q(∞, L)} for various system sizes.

In the above analysis, theT → 0 limit is skipped by use of the finite energy gap
in finite systems, but double extrapolations with respect toM andL are still necessary.
Calculations for some Trotter numbers are required for each system size, and simulations at
a ‘low enough’ temperature consume much CPU demand because of long correlation time.

Although the above analysis is required for the evaluation of a certain physical quantity
in the ground state, such a complicated procedure is not necessary for the investigation of
quantum critical phenomena. The universality class of the originalD-dimensional quantum
system in the ground state is expected to be equivalent to that of the transformed(D + 1)-
dimensional classical system, and Rieger and Young [16] pointed out that the finite-size
scaling holds when the ratiosM/Lz and β/M are fixed. The exponentz stands for the
ratio of the correlation length in the real direction (ξ ) and that in the Trotter direction
(ξτ ), namely ξz ∝ ξτ in the vicinity of the transition point. This exponent is given by
z = 1 in non-random systems (the Lorentz invariance). In this scheme, the temperature is
scaled in accordance with the system size, and the ambiguity of the simulated temperature
is automatically removed. Moreover, this temperature can be higher than the standard ‘low
enough’ temperature.

The transition point has been estimated from physical quantities in equilibrium until
now. When it is determined by the finite-size scaling analysis, the critical exponent should
also be evaluated simultaneously, and the accuracy of estimates becomes poor. When it
is estimated from scale-invariant quantities, the above disadvantage is excluded. However,
statistical errors of such complicated quantities are larger than those of ordinary quantities,
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Figure 2. Schematic behaviour of the non-equilibrium relaxation of the order parameter from a
perfectly ordered state. Values of the order parameter are plotted versus MCS in a logarithmic
scale (a) in the ordered phase, (b) at the transition point, and (c) in the disordered phase.

and the final estimates are not expected to be so accurate again. So, in this paper, we
utilize a new method for the determination of the transition point recently proposed by
Ito et al [17]. They showed that the transition point can be estimated quite accurately
with the non-equilibrium relaxation of the order parameter. That is, simulations are started
from a perfectly ordered state, and the order parameter is measured in each Monte Carlo
step (MCS). The order parameter decays exponentially in the disordered phase, remains
non-vanishing in the ordered phase, and power-law decay is observed only at the transition
point (figure 2). This calculation uses only several hundred or a few thousand MCS in each
sample, and very large systems can easily be treated without equilibration and Monte Carlo
sampling.

Since the Trotter extrapolation is justified only in equilibrium quantities, this method
is not consistent with the conventional world-line QMC method. Thus, the combination
with Rieger and Young’s scheme is indispensable for applications to quantum spin systems.
Since the transition point is not a universal value, the estimate obtained from transformed
classical spin models with fixedβ/M is generally different from the transition point of
the original quantum spin model. However, the transition point of the transformed model
should be used in the finite-size-scaling analysis of a series of systems with fixedβ/M, and
the ‘true’ transition point of the original model is estimated from some simulations with
different values ofβ/M. Details of this analysis will be explained elsewhere [23].

The present scheme is so general that it can be coupled with any kind of Monte Carlo
dynamics in principle. Although values of the dynamical critical exponent depend on the
dynamics (details will be explained in the next section), the power-law-decay behaviour at
the transition point is common as long as second-order phase transitions are considered.
The essential point of the usage of Rieger and Young’s scheme in the present framework is
the idea that simulated temperatures are scaled in accordance with the variance of system
sizes. Thus, Trotter-number-free methods such as the continuous-time loop algorithm [13]
can be utilized. On that occasion,β/Lz should be fixed instead ofM/Lz andβ/M. On the
other hand, the accuracy of the estimate of the transition point depends on the dynamics. If
a very fast dynamics such as the loop algorithm is utilized, the decay process is completed
within first few MCS and precise evaluation of the transition point would be difficult because
of large fluctuations of the order parameter and the discontinuity of MCS. Of course, this
statement is also model dependent: even the loop algorithm might be useful in systems with
principal slow dynamics such as quantum spin-glass models. We can at least tell that the
conventional ‘slow’ dynamics is suitable for regular systems as will be shown in the next
section.
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3. Numerical calculations of critical phenomenon

In order to verify the applicability of the new scheme explained in the previous section, we
analyse the quantum critical phenomenon of the one-dimensionalS = 1

2 asymmetricXY
model described by the following Hamiltonian,

H = −
L∑
i=1

Sxi S
x
i+1− g

L∑
i=1

S
y

i S
y

i+1−Hx
L∑
i=1

Sxi (2)

with the periodic boundary condition (Sx,yL+1 = Sx,y1 ). The in-plane fieldHx is introduced
only for the definition of the zero-field susceptibility, and is not applied in actual simulations.
We only consider even-spin systems which have a singlet ground state. This is the simplest
quantum spin model with conservation laws, and this model has already been solved exactly
[18–20]. There are no matrix elements between the two subspaces with

∑
i S

x
i = odd and∑

i S
x
i = even. The apparent transition pointgc = 1 is common in the original model (2) and

the transformed classical spin models. Simulations are based on the up–down basis along
the x-direction, and the Trotter number and simulated temperature are fixed as 2M/L = 1
andβ/M = 1, following Rieger and Young’s parametrization [16]. Under these conditions,
the originalL-spin system is transformed to a classicalL × L-spin system with all the
interactions unity atg = 1, and good scaling behaviour is expected. The phase space is
limited to the one with

∑
i S

x
i = even in which the ground state is included. Since finite

(not ‘low enough’) temperatures are introduced in the present scheme, the above restriction
of the phase space cannot be justifieda priori. Complementary simulations without this
restriction are discussed in the appendix.

3.1. Transition pointgc

First, the transition point is estimated with the non-equilibrium relaxation of the order
parameter. When thex-component of the magnetization,

mx(L) ≡ 1

L

L∑
i=1

Sxi (3)

is regarded as the order parameter, the regionsg < 1 andg > 1 correspond to the ordered
and disordered phases, respectively. Simulations are started from the all-up state, and the
initial 3×103 MCS are measured for theL = 1024, 2048 and 4096 systems. In simulations
for these system sizes, data with 20, 5 and 1 independent sequences of random numbers are
averaged, respectively. The order parameter of theL = 4096 system is plotted versus MCS
in a logarithmic scale in figure 3(a), and this behaviour is the same as displayed in figure 2.
That is, the data atg = 1.000 are almost on a straight line, and the data atg = 0.996
and g = 1.004 are clearly upward- and downward-bending, respectively. Therefore, the
transition point is estimated asgc = 1.000± 0.002 within the present simulations, as
expected. The data for theL = 1024 and 2048 systems atg = 1.000 are given in
figure 3(b) together with those for theL = 4096 system, and this figure means that there
exists no explicit systematic size dependence in such large systems. Since values ofL×2M
spins are averaged in these simulations, the data show relatively smooth behaviour in spite
of the small number of averaged random-number sequences.

Next, we perform similar simulations in smaller systems. In equilibrium calculations,
the ‘approximate’ transition pointgap(L) such as the maximum of the specific heat shows
the following systematic deviation from the transition pointgc in finite systems,

gap(L) = gc+ constant× L1/ν + · · · (4)
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Figure 3. The order parameter of the present model is plotted versus MCS in a logarithmic scale
(a) for L = 4096 atg = 0.996∼ 1.004 and (b) forL = 1024, 2048 and 4096 atg = 1.000.
Full curves are drawn as visual guides in the first figure.

and the critical exponent of the correlation length,ν, is estimated. The relaxation of the
order parameter forL = 32 and 64 (the numbers of averaged samples are 16 384 and
4096, respectively) is displayed in figures 4(a) and (b), respectively. These figures show
that the order parameter decays exponentially after a certain MCS even forg < 1. This
property is quite natural because the order parameter vanishes regardless of the value of
g in finite systems in equilibrium. These figures also reveal that the crossover MCS from
‘quasi-infinite’ properties to finite-size ones depends on system sizes, namely∼40 MCS for
L = 32, and∼180 MCS forL = 64. These results suggest that the above behaviour of
L > 1000 systems is nothing but transient, but that the present 3×103 MCS are small enough
to be regarded as ‘quasi-infinite’ timescales . Moreover, the transition point estimated from
these figures is alsogc ' 1.00, and the size dependence of the estimates seems quite small.
This behaviour is not unphysical because the ‘quasi-infinite’ property means that finite-size
effects are not apparent on this timescale. Thus, the scaling form (4) is not useful for the
estimation of the critical exponentν within the present scheme.

As explained in the previous section, the ‘transition point’ estimated with the present
scheme generally depends on the value ofβ/M. On the other hand, it is independent of
the value ofM/L, because ‘quasi-infinite’ properties are observed in the present scheme
and the difference of the shape of transformed clusters from squares is expected to result
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Figure 4. The order parameter of the present model is plotted versus MCS in a logarithmic
scale for (a) L = 32 and (b) L = 64. The crossover from ‘quasi-infinite’ properties to finite-size
properties is clearly seen. The crossover timescale is shown by the broken curve in each figure.

only in the difference in the crossover MCS as shown above. In order to confirm this
argument, we simulate systems with (a) 4M/L = 1 (L = 4096,M = 1024, two samples)
and (b) M/L = 1 (L = 2048,M = 2048, two samples). These results are plotted versus
MCS in a logarithmic scale in figures 5(a) and (b), respectively. These figures also give
gc = 1.000± 0.002, as expected.

3.2. Dynamical critical exponent1

According to the dynamical finite-size scaling theory [24, 25], the non-equilibrium relaxation
of the order parameter at the transition point is scaled [26, 27] as

mx(t) ∼ t−λ λ = β

1ν
(5)

wheret stands for MCS, the critical exponentsβ andν will be defined in section 3.3 ((14)
and (16)), and the dynamical critical exponent1 is defined as

〈Sxi (0)Sxi (t)〉 − 〈Sxi (0)〉2 ∼ exp(−t/τ ) (6)

τ ∼ |g − gc|−1 for g→ gc. (7)

Although the transition point can be estimated accurately enough with the data displayed
in figure 3(a), these data are too divergent to evaluate the exponentλ with the local-
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Figure 5. The order parameter of the present model is plotted versus MCS in a logarithmic scale
(a) for L = 4096 andM = 1024 atg = 0.996∼ 1.004 and (b) for L = 2048 andM = 2048
at g = 0.996∼ 1.004. Full curves are drawn as visual guides.

exponent method originally proposed by Stauffer [26]. Then, we naively fit the data
shown in figure 3(a) with the scaling form (5) for various timescales (t = tini ∼ tfin,
1t ≡ tfin − tini = 50, 100 and 200). Estimates of the exponentλ are plotted versus 1/tmid

in figure 6, with tmid ≡ (tini + tfin)/2. In addition to the data given in figure 3(a), results
of two more independent simulations are averaged in order to obtain reliable estimates. In
each1t , λ almost remains constant in the early stage, and it begins to fluctuate astmid

becomes larger. As for the final estimateλest, we require that the central value should
be close to the early-stage one, and that initial up–down fluctuations should be included
within the error bar. These conditions are satisfied when we takeλest= 0.1167± 0.0033
(see figure 6). Combining this exponent with the exact solution,β/ν = 0.25 [18–20], the
dynamical critical exponent of the present model is estimated as

1 = 2.14± 0.06 (8)

which is consistent with that of the two-dimensional Ising model,1 = 2.165± 0.010 [28].
This result might suggest that the dynamical critical exponent is common in the free-fermion
models, even though the universality classes are different. Actually, the critical exponentν

defined by

〈Sxi Sxj 〉 − 〈Sxi 〉2 ∼ exp(−|ri − rj |/ξ) (9)
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Figure 6. Estimates of the exponentλ for various ranges of timescales (t = tini ∼ tfin,
1t = tfin − tini = 50, 100 and 200) are plotted versus 1/tmid, with tmid = (tini + tfin)/2.
The full, dotted and heavy full curves correspond to the results for1t = 50, 100 and 200,
respectively. The final estimateλest= 0.1167± 0.0033 is displayed by straight lines.

ξ ∼ |g − gc|−ν for g→ gc (10)

is unity in both the present model and the two-dimensional Ising model. When the definition
of 1, (6) and (7), is compared with that ofν, (9) and (10), the exponent1 can be regarded
as the MCS version ofν. Since these two models have the commonν, it is not strange that
they might also have the common1. Of course, the statistical error of the present estimate
is not small enough, and further studies in this direction (averaging many sequences of
random numbers or simulating larger systems) are required.

3.3. Critical exponentsβ/ν andγ /ν

Next, we estimate the critical exponents which can be obtained from equilibrium simulations
at g = gc = 1. We evaluate the squared magnetization defined by

m2(g, L) ≡ 〈(mx(L))2〉 = 1

2ML2

2M∑
n=1

〈( L∑
i=1

Sxi,n

)2〉
(11)

and the zero-field susceptibility for the in-plane field defined by

χ(g, L) ≡ ∂

∂Hx
〈mx(L)〉

∣∣∣∣
Hx=0

= β

4M2L

〈( L∑
i=1

2M∑
n=1

Sxi,n

)2〉
. (12)

Heren stands for the suffix in the Trotter direction, and these quantities show the following
scaling behaviour at the transition point,

m2(gc, L) ∼ L−2β/ν χ(gc, L) ∼ Lγ/ν (13)

where the critical exponentsβ, γ andν are defined as

m(g,∞) ∼ (gc− g)β for g→ gc (14)

χ(g,∞) ∼ |g − gc|−γ for g→ gc (15)

ξ(g,∞) ∼ |g − gc|−ν for g→ gc. (16)
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Table 1. MCS for equilibration (E-MCS) and for measurement (M-MCS) are listed for various
system sizes.

L E-MCS M-MCS

16 0.2× 106 0.2× 107

24 0.4× 106 0.4× 107

32 0.8× 106 0.8× 107

48 1.2× 106 1.2× 107

64 0.5× 106 0.5× 107

80 0.8× 106 0.8× 107

96 1.0× 106 1.0× 107

112 1.2× 106 1.2× 107

128 2.0× 106 2.0× 107

Table 2. Ground-state averages of the squared magnetization and the susceptibility at the
transition point for various system sizes.

L m2 χ

16 0.110 94± 0.000 31 1.2242× 101 ± 3.0× 10−2

24 0.093 79± 0.000 35 2.2785× 101 ± 6.5× 10−2

32 0.082 79± 0.000 37 3.531× 101 ± 1.2× 10−1

48 0.068 68± 0.000 23 6.589× 101 ± 3.0× 10−1

64 0.060 52± 0.000 29 1.0299× 102 ± 6.3× 10−1

80 0.054 37± 0.000 21 1.4385× 102 ± 7.2× 10−1

96 0.049 82± 0.000 26 1.890× 102 ± 1.3× 100

112 0.046 24± 0.000 26 2.381× 102 ± 1.7× 100

128 0.043 36± 0.000 22 2.912× 102 ± 1.9× 100

Simulations are performed for theL = 16, 24, 32, 48, 64, 80, 96, 112 and 128 systems, and
the MCS for each system size are listed in table 1. Results of these calculations are given
in table 2 and figures 7(a) and (b). The critical exponents are estimated by the least-squares
fitting of the data for 646 L 6 128 with the scaling forms (13) as

β/ν = 0.241± 0.003 γ /ν = 1.499± 0.005. (17)

On the other hand, when we utilize the following scaling forms in which the next-order
correction terms are considered,

m2(gc, L) = a1L
−2β/ν + a2L

−2β/ν−1+ · · · (18)

χ(gc, L) = b1L
γ/ν + b2L

γ/ν−1+ · · · (19)

we have

β/ν = 0.245± 0.006 γ /ν = 1.49± 0.02 (20)

from the least-squares fitting of the data for 246 L 6 128. The estimates (17) and (20)
are both consistent with the exact values,β/ν = 0.25 andγ /ν = 1.5 [18–20].

3.4. Critical exponentν

The critical exponentsβ/ν andγ /ν are related [29] to one another through the exponentz

as

2β/ν + γ /ν = d + z (21)
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Figure 7. Ground-state averages of (a) the squared magnetization and (b) the susceptibility at
the transition point are plotted versus system sizes in a logarithmic scale. The full lines are
drawn by the least-squares fitting of the data for 646 L 6 128 with (11), and the broken lines
are obtained by the least-squares fitting of the data for 246 L 6 128 with (16) and (17).

whered denotes the spatial dimension. Then, the critical exponentν should be estimated
independently for the complete determination of the universality class. This calculation
requires several simulations out of the transition point, and they consume much more CPU
time than the simulations in section 3.3. Since the direct evaluation of the correlation length
is not so accurate, we instead estimate the critical exponentν on the basis of the following
scaling functions,

m2(g, L) ∼ L−2β/νf (L/ξ(g)) ∼ L−2β/νF (L1/ν |g − gc|) (22)

χ(g, L) ∼ Lγ/νg(L/ξ(g)) ∼ Lγ/νG(L1/ν |g − gc|). (23)

These formulae mean that the derivatives with respect tog behave as

d

dg
m2(g, L)

∣∣∣∣
g=gc

∼ L(1−2β)/ν d

dg
χ(g, L)

∣∣∣∣
g=gc

∼ L(1+γ )/ν . (24)

Practically, such derivatives are replaced by the evaluation of the slopes of the physical
quantities just below the transition point. For example, the susceptibility of theL = 128
system is displayed in figure 8. The exponents appeared in (24) are estimated as

(1− 2β)/ν = 0.525± 0.007 (1+ γ )/ν = 2.506± 0.006 (25)
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Figure 8. The susceptibility in theL = 128 cluster is plotted versus the control parameterg

in the vicinity of the transition point. The slope of these data (the full line) is evaluated by the
least-squares fitting of the data drawn with full symbols.

Table 3. Slopes of the squared magnetization and the susceptibility just below the transition
point for various system sizes.

L m2 χ

64 0.5942± 0.0039 1301± 8
80 0.6804± 0.0062 2320± 21
96 0.7590± 0.0086 3720± 42

112 0.8191± 0.0086 5457± 57
128 0.8714± 0.0074 7567± 64

by the least-squares fitting of the data for 806 L 6 128 (see table 3 and figures 9(a) and
(b)) with (24). From the exponents (17) and (25), we have

1/ν = 1.007± 0.008 or ν = 0.993± 0.008 (26)

assuming the statistical independence of the exponents (17) and (25). This estimate is
consistent with the exact value,ν = 1 [20]. Note that the complete coincidence of the
estimates ofν obtained from two different quantities would be by chance.

4. Summary and future problems

In this paper, we have proposed a new efficient finite-size scaling scheme to study quantum
critical phenomena in quantum spin systems on the basis of the QMC method. Instead
of the conventional Trotter extrapolation at low enough temperatures, we concentrate on
transformed Ising spin systems with 2M/L = 1 and β/M = 1. The transition point
of the transformed model is estimated with the non-equilibrium relaxation of the order
parameter, and various critical exponents are evaluated from the standard finite-size scaling
of transformed classical spin systems. That is, the critical exponents divided by the critical
exponent of the correlation length,ν, are estimated from the size dependence of physical
quantities at the transition point. The exponentν itself is evaluated from the size dependence
of the slopes of physical quantities just below the transition point. Then, the universality
class of the models are completely determined within the present framework. In order to
verify the applicability of the present scheme, we have estimated the transition point and the
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Figure 9. The slopes of (a) the squared magnetization and (b) the susceptibility are plotted
versus system sizes in a logarithmic scale. The full lines are drawn by the least-squares fitting
of the data for 806 L 6 128 with (22).

critical exponentsβ, γ andν of the one-dimensionalS = 1
2 asymmetricXY model, and all

the critical exponents have been evaluated with high accuracy in comparison with the exact
solutions. The dynamical critical exponent has also been estimated as1 = 2.14± 0.06,
which is consistent with that of the two-dimensional Ising model. The present estimation of
the transition point is more efficient than any other methods based on equilibrium quantities.
The present finite-size-scaling scheme is so general that it can be combined with improved
algorithms such as the quantum cluster algorithm.

The present simulations have been performed in the restricted phase space with∑
i S

x
i = even in which the ground state is included. Complementary simulations without

this restriction (simulations including the Trotter-direction global flip) have also been
performed, and we have found that theses simulations require much CPU demand (about
1.3 times larger in the present model) and show larger finite-size corrections than those
with the restriction of the phase space. These results mean that simulations including the
Trotter-direction global flip are useless. We emphasize that the conventional ‘slow’ single-
spin-flip-type dynamics is practically useful for the precise estimation of the transition point
in the present scheme. On the other hand, the introduction of the quantum cluster algorithm
in simulations of equilibrium quantities is an important future task for us. Applications to
quantum critical phenomena of the two-dimensionalS = 1

2 dimerized Heisenberg models
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[23] and the two-dimensionalS = 1
2 random Heisenberg models [30] will be reported in

the near future.
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Appendix

Here we show the results of simulations including the Trotter-direction global flip. Since
details of the analysis have already been explained in sections 2 and 3, only the results for
the transition point and the critical exponentsβ/ν andγ /ν are briefly summarized.

The transition point is estimated with theL = 4096 system for one sequence of random
numbers. The decay of the order parameter from the all-up state is measured during 3×103

MCS as shown in figure 10, and we havegc = 1.000±0.002. Although this estimate is the
same as obtained in section 3, fluctuations of the order parameter become larger than those
measured in section 3. This result means that the present scheme also works well when the
Trotter-direction global flip is included, but the expansion of the phase space results in the
increase of fluctuations, which is not desirable for accurate estimation of critical phenomena.

The squared magnetization and the zero-field susceptibility are simulated at the transition
point g = gc = 1 for the same system sizes and the same MCS as listed in table 1. The
size dependence of these quantities are displayed in figures 11(a) and (b), and the critical
exponents are estimated with the scaling forms (13) as

β/ν = 0.219± 0.007 γ /ν = 1.546± 0.009 (27)

from the 646 L 6 128 clusters, and with (18) and (19), we have

β/ν = 0.22± 0.03 γ /ν = 1.56± 0.05 (28)

Figure 10. The order parameter of the present model including the Trotter-direction global flip
is plotted versus MCS in a logarithmic scale forL = 4096. Full curves are drawn as visual
guides.
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Figure 11. Size dependence of (a) the squared magnetization and (b) the susceptibility
at the transition point in a logarithmic scale. The Trotter-direction global flip is included
in these simulations. The full lines are drawn by the least-squares fitting of the data for
64 6 L 6 128 with (11), and the broken lines are obtained by the least-squares fitting of
the data for 326 L 6 128 with (16) and (17).

from the 326 L 6 128 clusters. These estimates are not inconsistent with the exact
solutions,β/ν = 0.25 andγ /ν = 1.5, but the accuracy is not so good as the results
obtained in section 3 due to larger finite-size corrections.

The above two numerical calculations with respect to non-equilibrium relaxation and
equilibrium quantities are based on the same algorithm, and they consume larger CPU time
than those in section 3 because of the extra Trotter-direction global flip. They spend about
1.3 times larger CPU demand in the present model. All the results suggest that simulations
including the Trotter-direction global flip are inferior to those without that kind of global
flip.
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